Generating Volatility Forecasts from Value at Risk Estimates
نویسنده
چکیده
Statistical volatility models rely on the assumption that the shape of the conditional distribution is fixed over time and that it is only the volatility that varies. The recently proposed conditional autoregressive value at risk (CAViaR) models require no such assumption, and allow quantiles to be modelled directly in an autoregressive framework. Although useful for risk management, CAViaR models do not provide volatility forecasts, which are needed for several other important applications, such as option pricing and portfolio management. It has been found that, for a variety of probability distributions, there is a surprising constancy of the ratio of the standard deviation to the interval between symmetric quantiles in the tails of the distribution, such as the 0.025 and 0.975 quantiles. This result has been used in decision and risk analysis to provide an approximation of the standard deviation in terms of quantile estimates provided by experts. Drawing on the same result, we construct financial volatility forecasts as simple functions of the interval between CAViaR forecasts of symmetric quantiles. Forecast comparison, using five stock indices and 20 individual stocks, shows that the method is able to outperform GARCH models and moving average methods.
منابع مشابه
Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models
Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...
متن کاملImplied Volatilities as Forecasts of Future Volatility, the Market Risk Premia, and Returns Variability
The unbiasedness tests of implied volatility as a forecast of future realized volatility have found implied volatility to be a biased predictor. We explain this puzzle by recognizing that option prices contain a market risk premium not only on the asset itself, but also on its volatility. We show using a stochastic volatility model, that a call option price can be represented as an expected val...
متن کاملPortfolio Risk Forecasting
This paper focuses on portfolio risk forecasting in an asymmetrical framework. Risk is defined by two factors; the dependence structure and the volatility. In order to account for asymmetric dependencies, the return series’ interdependence is estimated via a Copula approach rather than the correlation matrix. This allows to capture tightening dependence during market turmoils and loose dependen...
متن کاملForecasting Conditional Correlation for Exchange Rates using Multivariate GARCH models with Historical Value-at-Risk application
The generalization from the univariate volatility model into a multivariate approach opens up a variety of modeling possibilities. This study aims to examine the performance of the two multivariate GARCH models BEKK and DCC, applied on ten years exchange rates data. Estimations and forecasts of the covariance matrix are made for the EUR/SEK and USD/SEK, whereby the forecasts are used in a pract...
متن کاملFinancial Crisis, Value-at-risk Forecasts and the Puzzle of Dependency Modeling
Forecasting Value-at-Risk (VaR) for financial portfolios is a staggering task in financial risk management. The turmoil in financial markets as observed since September 2008 called for more complex VaR models, as ”standard” VaR approaches failed to anticipate the collective market movements faced during the financial crisis. Hence, recent research on portfolio management mainly focussed on mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Management Science
دوره 51 شماره
صفحات -
تاریخ انتشار 2005